

The Space Life: Microbes on Surfaces and in the Air aboard the International Space Station

Dr. Aleksandra Checinska Sielaff
Washington State University
Extension – Youth and Families Program Unit
Pullman, WA
March 27, 2018

© 2018 California Institute of Technology. Government sponsorship acknowledged

Overview

- International Space Station as a living environment
- Research microbes on the surfaces and in the air of the ISS
- Conclusions

International Space Station (ISS)

- Launched on November 20th, 1998
- Low Earth Orbit (LEO) –
 altitude between 330 –
 435 km (205 270 mi)
- The brightest object on the sky
- Size of a football field
- Orbits Earth at 5 miles per second
- Full crew: 6 people
- Weights ~ 1 mln pounds

Unique features of the ISS

- 1. Microgravity
- 2. Extreme conditions:
 - a) Vacuum
 - b) Atomic oxygen
 - c) Ultraviolet radiation
 - d) Particulate or ionizing radiation
 - e) Plasma
 - f) Temperature extremes

Microorganisms

- Smallest microorganisms that constitute bacteria, archaea, fungi, viruses, protozoa, algae
- Ubiquitous and abundant in the environment
- Have a variety of essential functions
- Very often adapted to specific environmental niches, e.g. those that inhabit the boiling water springs in Yellowstone National Park

Mysterious creatures?

"Most types of microbes remain unknown. It is estimated that we know fewer than 1% of the microbial species on Earth. Yet microbes surround us everywhere - air, water, soil. An average gram of soil contains one billion (1,000,000,000) microbes representing probably several thousand species." *International Society of Microbial Ecology*

Detection of Microbes – Traditional Methods

- Enumeration growth on the Petri dishes plate in solidified medium
- 2. Identification based on the morphology

Culture plates

Detection of Microbes – Molecular Methods

DNA extraction

Polymerase Chain Reaction (PCR)

Sequencing

Database search

Identification via 16S rRNA

Discovery of a free-living chlorophyll *d*-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. Miller et al. (2005). PNAS

Propidium Monoazide Treatment to Distinguish between Dead and Live Cells

www.biotium.com

Culture-Dependent and Culture-Independent Nucleic-Acid-Based Methods Used in the Microbial Safety Assessment of Milk and Dairy Products; Fusco and Quero (2014). Comprehensive Reviews in Food Science and Food Safety

Bioluminescence Assay – Metabolically Active Cells

https://nhmu.utah.edu

Thermofisher.com

Study of Air and Surfaces

Clean room

- Multi-personnel
- Gowning ("bunny suit", masks, gloves)
- Gravity
- Radiation
- Activities limited to work (assembly of spacecrafts and instruments)

ISS

- Crew of 6 people
- Casual clothes; shortsleeved shirts, shorts
- Microgravity
- Elevated radiation
- Work and everyday activities (working, eating, sleeping, exercising, and

Detailed Sample Characteristics

Sample name	Location	Source	Туре	Specifications	Duration	Model	Mission activities
ISS HEPA	ISS Node 2	HEPA filter element	Air	HEPA rated, retains 99.97% particles >0.3 µm; 20-mesh inlet screen has 841 µm sieve openings	40 months	Part no. SV810010-1, Serial no. 0049; HEPA media supplied by Flanders Filters, Inc.; Nomex inlet screen	Returned aboard STS-134/ULF6 in May 2011
ISS Debris	ISS	ISS Vacuum Cleaner bag dust	Surface	Vacuum bag retains particles >6 µm; HEPA rated filter retains particles >0.3 µm	1 day	International Space Station vacuum cleaner	Expedition 31; returned aboard Soyuz flight 29S in July 2012
JPL-SAF Debris	JPL – SAF Cleanroom Class 10K	Vacuum cleaner bag dust	Surface	HEPA rated filter retains 99.7% particles >0.3 μm	70 days	Nilfisk GM80, 81620000	Used for robotic missions
JPL-103 Debris	JPL – 103 Cleanroom Class 1K	Vacuum cleaner bag dust	Surface	HEPA rated filter retains 99.7% particles >0.3 μm	>180 days	Nilfisk GM80, 81620000	Sub-assembly of robotic missions

Checinska, A., A. J. Probst, P. Vaishampayan, J. R. White, D. Kumar, V.G. Stepanov, G.E. Fox, H.R. Nilsson, D.L. Pierson, J. Perry, K. Venkateswaran. 2015. Microbiomes of the dust particles collected from the International Space Station and Spacecraft Assembly Facilities. Microbiome 3(1):50.

Bacterial Bioburden by Various Methods

Solibacillus kalamii ISSFR-015T

Source: ISS HEPA filter

Characteristics:

- Rod, spore-former
- A4α _I -Lys-_D-Glu peptidoglycan
- MK-6, MK-7 and MK-8 isoprenoid guinones
- polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine, and one unknown phospholipid

Name: ka.lam.i.i., N.L. gen. n. kalamii referring to Abdul Kalam, a well-known scientist who advanced space research in India

Checinska, A., R. M. Kumar, D. Pal, S. Mayilraj, K. Venkateswaran. 2016. *Solibacillus kalamii* sp. nov., isolated from a high-efficiency particulate arrestance (HEPA) filter element used in the International Space Station. Submitted to IJSEM for a review.

Bacterial Community Composition

Significant Operational Taxonomic Units (OTUs)

Species Diversity

Differential Bacterial Composition of the Clean Room and the ISS Samples

Conclusions

- First study to utilize next-generation sequencing (stateof-the-art methodology) on the samples from the International Space Station
- Bacterial diversity based on the sequencing is much more diversified from culture plates.
- The composition of the ISS samples from the HEPA filter (air) and vacuum cleaner (debris) was different but still more similar to each other than to clean room samples
- Propidium monoazide treatment distinguished between dead and viable bacterial species.

Future Goals

- Environmental monitoring using rapid microbial detection and identification assay development
- Current results help develop more advanced mitigation strategies for prolonged space travel (e.g. mission to Mars)

Acknowledgments

<u>Jet Propulsion Laboratory (Pasadena, CA, USA):</u>

- Dr. Kasthuri Venkateswaran (Senior Research Scientist, Principal Investigator)
- Dr. Parag Vaishampayan (Scientist)
- Dr. Melissa Jones (Assistance Section Manager)

Funding:

Space Biology NNH12ZTT001N grant no. 19-12829-26 under Task Order NNN13D111T

Collaborators:

- Dr. Alexander Probst, University of Duisburg-Essen, Germany
- Dr. James White, Resphera Biosciences, Baltimore, MD, USA
- Deepika Kumar, University of Houston, Houston, TX, USA
- Dr. Victor Stepanov, University of Houston, Houston, TX, USA
- Dr. George Fox, University of Houston, Houston, TX, USA
- Dr. Henrik Nilsson, University of Gothenburg, Sweden
- Dr. Duane Pierson, Johnson Space Center, Houston, TX, USA
- Jay Perry, Marshall Space Flight Center, Huntsville, AL, USA
- Dr. Shanmugam Mayilraj, Microbial Type Culture Collection and Gene Bank, Chandigarh, India
- Rajendran Mathan Kumar, Microbial Type Culture Collection and Gene Bank, Chandigarh, India
- Deepika Pal, Microbial Type Culture Collection and Gene Bank, Chandigarth, India